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A B S T R A C T   

Direct-demand models of pedestrian volumes (identifying relationships with built environment characteristics) 
require pedestrian data, typically from short-duration manual counts at a limited number of locations. We 
overcome these limitations using a novel source of pedestrian data: estimated pedestrian crossing volumes based 
on push-button event data recorded in traffic signal controller logs. These continuous data allow us to study more 
sites (1494 signalized intersections throughout Utah, US) over a much longer time period (one year) than in 
previous models, including the ability to detect variations across days-of-week and times-of-day. Specifically, we 
develop direct demand (log-linear regression) models that represent relationships between built environment 
variables (calculated at ¼- and ½-mile network buffers) and annual average daily and hourly pedestrian metrics. 
We control spatial autocorrelation through the use of spatial error models. All results confirm theorized re-
lationships: There is more pedestrian activity at intersections with greater population and employment densities, 
a larger proportion of commercial and residential land uses, more connected street networks, more nearby 
services and amenities, and in lower-income neighborhoods with larger households. Notably, we also find 
relevant day-of-week and time-of-day differences. For example, schools attract pedestrian activity, but only on 
weekdays during daytime hours, and the coefficient for places of worship is higher in the weekend model. K-fold 
cross-validation results show the predictive power of our models. Results demonstrate the value of these novel 
pedestrian signal data for planning purposes and offer support for built environment interventions and land use 
policies to encourage walkable communities.   

1. Introduction 

Quantifying pedestrian volumes and levels of walking activity is 
critical for many transportation planning, engineering, and manage-
ment tasks. Traffic safety analyses require estimates of pedestrian 
exposure to risk, and durations and distances of physically active 
transportation are inputs to transportation health impact assessments. 
Information on walking is also useful for analyzing pedestrian level/ 
quality of service, designing pedestrian infrastructure, and prioritizing 
pedestrian investments. Furthermore, there is a growing interest in 
creating active living and walk friendly communities in order to improve 
health, reduce automobile dependence, and strengthen local economies. 

Pedestrian volume data can be collected. Nevertheless, traditional 
data collection methods for monitoring pedestrian traffic have 

limitations: They involve short durations, few locations, or samples of 
the population. Manual intersection or street segment counts are time 
consuming and often infeasible to conduct over long periods of time. 
Instruments such as infrared counters can record continuous data on 
trail users, but they are costly to deploy across multiple sites (Ryus et al., 
2014). The passive collection of crowdsourced pedestrian data from 
mobile devices shows promise, but data may be non-representative and 
require calibration and factoring methods (StreetLight InSight, 2018). 
Methods have been developed to adjust short-duration counts to average 
pedestrian volumes using factors developed from permanent counters 
(FHWA, 2016), but they still usually require manual counts and are 
sensitive to count duration, seasonality, and factor group selection. 

Alternatively, pedestrian volume data be modeled. Conventional 
methods of modeling roadway volumes are inappropriate for 
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pedestrians, due to data and scale challenges with including pedestrians 
in regional travel demand forecasting models (Singleton et al., 2018). 
Instead, planners interested in facility-specific information have turned 
to using direct demand models (Kuzmyak et al., 2014; Munira, 2017). 
Direct demand models predict pedestrian volumes using observed 
counts and measures of the surrounding streetscape, land uses, built 
environment, and street network. Such models help to understand how 
environmental features affect pedestrian volumes and inform trans-
portation and land-use planning and urban design strategies to promote 
walkable communities. Still, direct demand models require large 
quantities of (pedestrian) estimation data in order to be generalizable 
beyond the few locations where they were developed, and they are often 
insensitive to temporal variations in walking activity. 

The objective of this research is to examine relationships between the 
built environment and pedestrian activity through the development of 
direct demand models of pedestrian volumes, taking advantage of a 
novel and relatively ubiquitous (in both time and space) source of 
pedestrian data. Specifically, we utilize estimates of pedestrian crossing 
volumes—taken from pedestrian push-button activity data from high- 
resolution traffic signal controller logs—and apply log-linear regres-
sion models for different time periods to study nearly 1500 signalized 
intersections throughout Utah, US. Our study’s primary contribution is 
the use of continuously-collected pedestrian activity data from traffic 
signals (measured over the course of one year, and averaged per day and 
per hour) for direct demand pedestrian volume modeling. Notably, this 
allows us to uncover some theoretically-consistent built environment 
relationships with walking that many other similar studies have not 
found, and to identify day-of-week and time-of-day variations in those 
relationships. In the following sections, we first summarize existing 
literature on built environment relationships and direct-demand models 
of pedestrian counts/volumes. We then describe our data and methods, 
present our results, and finally discuss key findings. 

2. Literature review 

Two general threads of research have investigated built environment 
correlates of pedestrian counts or volumes. One research path is moti-
vated by developing models to predict pedestrian demand, for use in 
various transportation engineering, planning, and safety analysis tasks. 
For example, Schneider et al. (2009) describe several applications of 
such models: to “quantify pedestrian exposure in safety analysis,” pri-
oritize pedestrian projects, design pedestrian infrastructure, predict 
pedestrian volumes in the future, analyze crossings warrants, and 
evaluate commercial visibility (p. 13). In these studies, built environ-
ment characteristics predict pedestrian counts and are used to estimate 
pedestrian volumes in areas where data have not been collected. The 
other strand of research focuses on understanding relationships between 
urban design characteristics and walking activity, to inform planning 
and design for walkable, healthy cities. These studies often focus on 
measuring more detailed and complex attributes of urban form and the 
built environment, including the so-called “D” variables (e.g., develop-
ment density, land use diversity, street network design, destination 
accessibility, and distance to transit) (Ewing and Cervero, 2010), urban 
design qualities of the streetscape (Ewing and Handy, 2009), and/or 
street network connectivity elements derived from Space Syntax (Hilli-
er, 2007). A simplified characterization is that studies of the first kind 
focus primarily on pedestrian volumes and secondarily on built envi-
ronment measures, while studies of the second kind do the opposite. Of 
course, some research straddles the boundaries of the two kinds (Raford 
and Ragland, 2006; Raford and Ragland, 2004). 

Table 1 and Table 2 summarize the methods, outcomes, and pre-
dictors used in studies modeling pedestrian volumes as a function of 
built environment measures. Similar summaries have been presented in 
recent publications (Munira, 2017; Schneider et al., 2021). In this 
summary, we focus on studies with models of pedestrian counts or 
volumes, not on literature using individual- or household-based 

measures of walking behavior. We also exclude studies that group walk 
and bicycle traffic together into one non-motorized mode. 

In pedestrian volume models, some built environment measures (see 
Table 2) are consistently related to walking in expected directions, while 
results for other variables are more equivocal. More often than not, 
studies find positive associations with residential and employment 
density. Walking is also closely linked to public transit: locations closer 
to transit stops/stations and with more transit stops nearby tend to see 
greater pedestrian volumes. Diversity measures like land use mix and 
entropy are sometimes positively related to pedestrian volumes, but 
studies also find insignificant or even negative relationships. More 
studies find null or unexpectedly negative results than positive results 
for traditional street network design variables like intersection density 
and percentage of 4-way intersections. Studies of street network con-
figurations tend to find positive associations with space syntax measures 
like integration. Studies of urban design and streetscape qualities tend to 
find positive associations with imageability (the quality of a place that 
makes it distinct, recognizable and memorable) and transparency (the 
degree to which people can see or perceive human activity beyond the 
edge of a street; Park et al., 2019). A few studies have found that 
pedestrian volumes are significantly explained by socioeconomic and 
environmental variables like household size, household incomes, parks, 
and slope. 

As shown in Table 1, most pedestrian volume direct demand models 
utilize manually-collected, short-duration counts of the number of 
people walking along street segments or crossing at intersections. 
Sometimes these counts are as short as 30 or even 10 min (or multiple 5- 
min counts), but rarely do they exceed 12 h. These short durations are 
not surprising, given the cost and effort of conducting manual pedestrian 
counts at multiple locations (Ryus et al., 2014). One exception is the one 
week of automated pedestrian counts conducted in Blacksburg, Virginia 
(Hankey et al., 2017; Lu et al., 2018). For models relating pedestrian 
volumes to the built environment, studying many sites is critical for both 
the power of the analysis (to detect statistically-significant associations) 
and the generalizability of results (across varied locations). Most 
research builds models using data from between several dozen and 
several hundred locations. Three exceptions are the 1018 signals in 
Montréal (Miranda-Moreno and Fernandes, 2011), the 1270 in-
tersections throughout California (Griswold et al., 2019), and the nearly 
10,000 street segments with pedestrian counts in Seoul, South Korea (e. 
g., Kim et al., 2019). 

The data collection methods used to obtain pedestrian volumes for 
most previous research led to some limitations in the accuracy, gener-
alizability, and sensitivity of model results. First, the use of short- 
duration counts to represent average or typical volumes—even when 
adjusted for time-of-day and weather using a smaller number of longer- 
duration automated counts—adds measurement error to the dependent 
variable. This potentially affects the value and significance of estimated 
associations. Second, the short time periods typically studied—often 
weekdays during daytime or morning/midday/evening peak 
hours—limits the ability of models to consider temporal variations in 
relationships between the built environment and pedestrian volumes. 
There may be interesting and policy-relevant variations by time-of-day, 
day-of-week (weekdays vs. weekends), and season. Third, the number of 
locations studied—usually less than 1000 and sometimes less than 
100—can limit both the generalizability of findings as well as the sta-
tistical power to detect significant associations. 

In this study, we mitigate some of these limitations by utilizing a new 
source of pedestrian data: estimated pedestrian crossing volumes at 
signalized intersections, taken from pedestrian push-button events 
recorded in archived high-resolution traffic signal controller logs 
(Sturdevant et al., 2012). Assuming a traffic signal includes walk in-
dications and pedestrian detection (usually push-buttons), at least two 
relevant pedestrian events can be recorded. Event code 90 (“pedestrian 
detector on”) occurs whenever a pedestrian push-button is activated 
(pressed), which could happen multiple times per cycle. Event code 45 
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Table 1 
Summary of pedestrian volume modeling studies.   

Information   Pedestrian   Model  

Study Geography Locations Time Outcome Method Details Type Fit 

Pushkarev and Zupan (1971) Manhattan, New 
York City, New York, 
US 

≤605 block 
faces 

1969 Apr–Jun Volume, instant AP Twice, WD, MD & 
PM 

L 0.23–0.61 

Behnam and Patel (1977) Downtown 
Milwaukee, 
Wisconsin, US 

? street 
segments 

1971–1973 Sum Volume, 1 h MC Multiple times 6 
min, WD, DT 

LL 0.58 

Hillier et al. (1993) Central London, 
England, UK 

≤239 street 
segments 

?? Volume MC 20–30 times, AM & 
MD & PM 

LL 0.29–0.57 

Penn et al. (1998) Central London, 
England, UK 

7 street 
segments 

?? Volume, 50 min MC Ten times 5 min, 
AM & MD & PM 

CR 0.98 

Qin and Ivan (2001) Rural Connecticut, 
US 

32 crossings 1999 May, Jun, 
Oct, Nov 

Crossing volume MC Twice 9.5 h, WD & 
WE, DT 

LL 0.81–0.91 

Desyllas et al. (2003) Central London, 
England, UK 

231 street 
segments 

1999 Aug, 2000 
Mar, 2001 Jul 

Volume, 1 h MC Multiple 5 min, DT LL 0.82 

Raford and Ragland (2004) Oakland, California, 
US 

42 intersections ?? Volume, 1 year 
(extrapolated) 

MC Multiple 2 h, WD & 
WE, AM & PM 

?? 0.77 

Liu and Griswold (2009) San Francisco, 
California, US 

63 intersections 2002 May, Jun, 
Aug, Sep 

Crossing volume MC Once 4 h, WD, PM L, SA 0.75 

Miranda-Moreno et al. 
(2011) 

Montréal, Quebec, 
CA 

519 signalized 
intersections 

2003 Spr–Sum Volume MC Three times 1 h, 
WD, AM & MD & 
PM 

LL 0.55 

Raford and Ragland (2006) Boston, 
Massachusetts, US 

82 locations 2004 Aug Volume MC 24 times 5 min, WD 
& WE, DT 

?? 0.79–0.86 

Pulugurtha and Repaka 
(2013, 2008) 

Charlotte, North 
Carolina, US 

176 signalized 
intersections 

2005 Volume, 12 h MC Once 12 h, DT L 0.15–0.86 

Rodríguez et al. (2009) Bogotá, Distrito 
Capital, CO 

338 street 
segments 

2005 Jun–Aug Volume, 10 min MC Once 10 min, WD, 
AM 

NB 0.03 

Ewing et al. (2016), Ewing 
and Clemente (2013) 

New York City, New 
York, US 

588 block faces 2006 Sum Volume MC Four times, WD, DT NB, 
SA 

?? 

Arnold et al. (2010) San Diego County, 
California, US 

80 locations 2007 Jul–Aug, 
2008 

Volume, 2 h 
(adjusted) 

MC Twice 2 h, WD & 
WE, AM or MD or 
PM 

LL 0.52 

Hajrasouliha and Yin (2015) Buffalo, New York, 
US 

302 street 
segments 

2007–2010 Volume MC Twice, WD, DT L ?? 

Hankey et al. (2012) Minneapolis, 
Minnesota, US 

259 street/path 
segments 

2007–2010 Sep Volume, 12 h 
(extrapolated) 

MC 2 h or 12 h, WD, 
PM or DT 

NB 0.42 

Hankey and Lindsey (2016) Minneapolis, 
Minnesota, US 

471 street/trail 
segments 

2007–2014 Sep Volume, 1 h MC Various 2 h, PM LL 0.50–0.53 

Tabeshian and Kattan (2014) Calgary, Alberta, CA 34 intersections 2007–2012 Volume, 2 h MC Three times 2 h, 
AM & MD & PM 

L, P 0.79–0.92 

Schneider et al. (2009) Alameda County, 
California, US 

50 intersections 2008 Apr–Jun Crossing volume, 1 
week (extrapolated) 

MC Twice 2 h, WD & 
WE, AM or MD or 
PM 

L 0.89 

Miranda-Moreno and 
Fernandes (2011) 

Montréal, Quebec, 
CA 

1018 signalized 
intersections 

2008–2009 Crossing volume MC Once 8 h, WD, AM 
& MD & PM 

LL 0.58 

Ozbil et al. (2011) Atlanta, Georgia, US 157 locations ?? Volume MC 20 times (or ten 
times 20 min), DT 
& PM 

LL 0.82–0.84 

Kang (2018, 2017, 2015),  
Kim et al. (2019); Kang 
(2017), Sung et al. (2013, 
2015) 

Seoul, KR ≤9850 street 
segments 

2009 Aug–Nov Volume MC Six times 14 h, WD 
& WE, DT 

LL, 
SA 

0.24–0.81 

Schneider et al. (2012) San Francisco, 
California, US 

50 intersections 2009 Sep, 2010 
Jul–Aug 

Crossing volume, 1 
year (extrapolated) 

MC Once 2 h, WD, AM 
or PM 

LL 0.80 

Ameli et al. (2015) Downtown Salt Lake 
City, Utah, US 

179 block faces 2012 Sep–Oct Volume MC Twice 30 min, WD, 
MD & PM 

NB ?? 

Maxwell (2016) Glasgow, Scotland, 
UK 

693 street 
segments 

2014–2015 Sum Volume MC Four times, WD, DT NB, 
SA 

?? 

Sanders et al. (2017) Seattle, Washington, 
US 

49 intersections ?? Volume, 1 year 
(extrapolated) 

MC ??, PM P 0.76 

Hankey et al. (2017), Lu et al. 
(2018) 

Blacksburg, Virginia, 
US 

72 locations 2015 Apr–Oct Volume, 1 day & 1 h 
(averaged) 

AC Once 1 wk LL 0.71, 
0.00–0.78 

Park et al. (2019) Salt Lake County, 
Utah, US 

881 block faces 2015 Volume MC Four times, WD, DT NB, 
SA 

?? 

Hamidi and Moazzeni (2019) Downtown Dallas, 
Texas, US 

402 block faces 2016 Spr–Sum Volume, 30 min MC Once 30 min, WD, 
PM 

NB, 
SA 

?? 

Le et al. (2020) Dallas, Texas, US 196 
intersections 

2016 Volume 1 day 
(extrapolated) 

MC Once 2 h or 8 h NB ?? 

Griswold et al. (2019) California, US 1270 
intersections 

2006–2016 Crossing volume, 1 
year (extrapolated) 

MC Various 1–86 h, 
most two times 2 h, 
AM & PM 

LL 0.71 

Schneider et al. (2021) Milwaukee, 
Wisconsin, US 

260 
intersections 

2013–2018 Crossing volume, 1 
year (extrapolated) 

MC Various, many 13 
h, AM & MD & PM 

NB ?? 

(continued on next page) 
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(“pedestrian call registered”) occurs when a call to service a walk phase 
is registered, which usually happens just once per cycle for a particular 
phase or crossing (upon the first pedestrian detection event). In recent 
years, several studies have investigated the use of pedestrian signal data 
for different purposes, including for pedestrian volume estimation 
(Blanc et al., 2015; Day et al., 2011; Kothuri et al., 2017; Li and Wu, 
2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021). More 
generally, high-resolution traffic signal event data are beginning to be 
used in a variety of other research and operational contexts (Wu and Lui, 
2014), including through Automated Traffic Signal Performance Mea-
sures (ATSPM) systems (Day et al., 2016). 

To our knowledge, this is the first study to relate traffic signal-based 
measures of pedestrian activity with built environment characteristics. 
Recall the three limitations of the short-duration manual count pedes-
trian volume data typically used in prior built environment direct de-
mand models: measurement error due to factoring, an inability to model 
temporal variations, and the small number of locations studied. Since 
traffic signal data are recorded continuously (24 h a day, 365 days a 
year), they can overcome the second limitation. The third limitation is 
constrained only by the number of signalized intersections with such 
data in an area. Regarding the first limitation, we replace the mea-
surement error associated with factoring short-duration counts with the 
error due to the fact that pedestrian push-button data may not be a 
perfect measure of pedestrian crossing volumes. One person may press 
the push-button multiple times (although, only one pedestrian call 
would be registered), or a group of pedestrians may not press the button 
at all. Nevertheless, prior research looking at a couple days of data at one 
intersection in Oregon found correlations of around 0.80 or greater 
between pedestrian actuations and crossing volumes (Blanc et al., 2015; 
Kothuri et al., 2017). Another study looked at two mid-block crossings in 
Arizona over several days and estimated pedestrian crossing volumes 
from push-button data with a mean error of around ±2 pedestrians per 
hour (Li and Wu, 2021). 

A recent large-scale research effort in Utah investigating the feasi-
bility of pedestrian traffic signal data for pedestrian volume estimation 
found similar levels of accuracy. Singleton et al. (2020; Singleton and 
Runa, 2021) collected traffic signal data as well as video recordings of 
pedestrian crossing events at 90 randomly selected signalized in-
tersections across Utah in 2019. Almost 175,000 pedestrians were 
manually counted during more than 10,000 h of video, covering 
different months, weekdays, and hours. The authors then developed 
simple non-linear (quadratic and piecewise linear) regression models 
predicting hourly pedestrian crossing volumes as a function of con-
structed measures of pedestrian signal data (pedestrian actuations, and 
unique pedestrian detections (removing those within 15 s of another 
detection)). For ease of application, the models did not include traffic 
volumes or neighborhood socioeconomic/environmental characteris-
tics, although they did account for non-linear relationships between 
push-button use and pedestrian volumes (high vs. low pedestrian ac-
tivity signal) and different traffic signal operations (phase on pedestrian 
recall or not, short vs. long average cycle length; HAWK signal vs. 
traditional signal). Over more than 22,500 crossing-hours of 

observations, the correlation between observed and model-predicted 
hourly pedestrian crossing volumes was 0.84; most models had corre-
lations close to 0.90, and the mean error was ±3 pedestrians per hour 
(Singleton et al., 2020b; Singleton and Runa, 2021). Thus, these results 
along with other recent research (Blanc et al., 2015; Kothuri et al., 2017; 
Li and Wu, 2021) suggest that pedestrian signal data can be used to 
estimate pedestrian crossing volumes with reasonable accuracy. Based 
on these prior research findings, we think the tradeoff in the sources of 
error in the dependent variable (factoring short-duration counts vs. 
adjusting pedestrian push-button data) is reasonable. 

3. Data and methods 

3.1. Estimated pedestrian volumes from traffic signal data 

The study area includes the six most populous counties in Utah, US: 
Salt Lake, Utah, Davis, Weber, Washington, and Cache. Cumulatively, 
these six counties comprise 84% of Utah’s population and contain most 
of the roughly 2100 traffic signals in the state. Fig. 1 shows a map of the 
traffic signals located within the six study counties in Utah. The Utah 
Department of Transportation (UDOT) has helped lead the development 
and deployment of the ATSPM system (Day et al., 2016) through which 
archived traffic signal controller event logs can be accessed. As of fall 
2018, UDOT was actively archiving data from more than 1900 state- and 
locally-owned signals in a central database (Taylor and Mackey, 2018). 

Our pedestrian volume data are estimates of annual average daily 
pedestrian (AADP) crossing volumes at signalized intersections, derived 
from pedestrian activity events recorded in high-resolution traffic signal 
controller event logs. For this study, we obtained one year—01 July 
2017 through 30 June 2018—of pedestrian data from all traffic signals 
in our study area. After cleaning the data to remove missing observa-
tions, we applied the pedestrian volume estimation methods developed 
by Singleton et al. (2020; Singleton and Runa, 2021) to the pedestrian 
signal data. Next, we aggregated (over hours in a day and crossings at an 
intersection) and averaged (over days in the year) those estimates to 
calculate AADP at each signal. We then removed 143 locations with 
effectively no pedestrian activity (less than 1 per day); the vast majority 
of these were signals with no pedestrian push-buttons, either in dense 
downtowns (where signals operated on pedestrian recall) or in isolated 
locations (such as highway off-ramps and industrial areas). After this 
process, we were left with 1494 signals for our models. AADP ranged 
from 1 to nearly 6700, with a median of about 110 and a mean of about 
270. The distribution of AADP was positively skewed and leptokurtic. 
Since our data are available continuously throughout the year, we also 
calculated AADP for weekdays vs. weekends. In addition, we calculated 
the annual average hourly pedestrian (AAHP) crossing volumes for 
various times of day. As noted in the literature review, most studies do 
not collect enough data to analyze time-of-day variations, so we think 
our ability to model both average daily and average hourly pedestrian 
volumes is a relatively unique contribution. Descriptive statistics for the 
pedestrian volume dependent variables are shown in Table 3. 

Table 1 (continued )  

Information   Pedestrian   Model  

Study Geography Locations Time Outcome Method Details Type Fit 

This study Utah, US 1494 signalized 
intersections 

2017 Jun – 
2018 Jul 

Estimated volume, 1 
day & 1 h (averaged) 

AC Continuous LL, 
SA  

Notes:?? = unknown. 
Method: AC = automated counts, AP = aerial photos, MC = manual counts. 
Details: WD = weekday, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime. 
Type: L = linear, LL = log-linear (linear with natural log transformation), CR = linear with cube-root transformation, P = Poisson, NB = negative binomial, SA =
checked or corrected for spatial autocorrelation. 
Fit: R2 or pseudo-R2. 
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Table 2 
Summary of built environment predictors of pedestrian volumes.  

Variable Dir.a Studies 

Density 
Floor area ratio or building density + (Ameli et al., 2015; Ewing et al., 

2016; Ewing and Clemente, 2013;  
Hamidi and Moazzeni, 2019;  
Maxwell, 2016; Ozbil et al., 2011;  
Park et al., 2019; Sung et al., 2013)  

ns / 
−

(Ameli et al., 2015; Kim et al., 2017; 
Park et al., 2019; Sung et al., 2013) 

Population density, household 
density, or residential space 
density 

+ (Ameli et al., 2015; Arnold et al., 
2010; Behnam and Patel, 1977;  
Ewing et al., 2016; Ewing and 
Clemente, 2013; Griswold et al., 
2019; Hankey and Lindsey, 2016;  
Hankey et al., 2017; Kim et al., 
2019; Liu and Griswold, 2009; Lu 
et al., 2018; Miranda-Moreno et al., 
2011; Miranda-Moreno and 
Fernandes, 2011; Ozbil et al., 2011;  
Pulugurtha and Repaka, 2013, 2008; 
Raford and Ragland, 2004; Sanders 
et al., 2017; Schneider et al., 2009, 
2012, 2021; Tabeshian and Kattan, 
2014)  

ns / 
−

(Hajrasouliha and Yin, 2015;  
Hankey et al., 2012; Kang, 2017, 
2015; Maxwell, 2016; Qin and Ivan, 
2001; Park et al., 2019; Pulugurtha 
and Repaka, 2013, 2008; Rodríguez 
et al., 2009) 

Employment density, employment 
access, or commercial/office/ 
non-residential space density 

+ (Arnold et al., 2010; Behnam and 
Patel, 1977; Griswold et al., 2019;  
Hajrasouliha and Yin, 2015; Hankey 
and Lindsey, 2016; Kang, 2017, 
2015; Kim et al., 2019; Liu and 
Griswold, 2009; Miranda-Moreno 
et al., 2011; Miranda-Moreno and 
Fernandes, 2011; Ozbil et al., 2011;  
Park et al., 2019; Pulugurtha and 
Repaka, 2013; Pushkarev and 
Zupan, 1971; Raford and Ragland, 
2004; Sanders et al., 2017;  
Schneider et al., 2009, 2012, 2021;  
Sung et al., 2013; Tabeshian and 
Kattan, 2014)  

ns / 
−

(Hankey et al., 2012; Park et al., 
2019; Pulugurtha and Repaka, 
2013, 2008; Rodríguez et al., 2009;  
Sung et al., 2013)  

Diversity 
Land use mix, entropy, balance, or 

% retail 
+ (Ameli et al., 2015; Ewing et al., 

2016; Ewing and Clemente, 2013;  
Hajrasouliha and Yin, 2015; Hamidi 
and Moazzeni, 2019; Liu and 
Griswold, 2009; Park et al., 2019;  
Sung et al., 2013)  

ns / 
−

(Ameli et al., 2015; Arnold et al., 
2010; Ewing et al., 2016; Ewing and 
Clemente, 2013; Kang, 2018, 2017, 
2015; Kim et al., 2019, 2017;  
Maxwell, 2016; Park et al., 2019)  

Transit 
Distance to nearest rail/bus stop/ 

station 
− (Ameli et al., 2015; Ewing et al., 

2016; Ewing and Clemente, 2013;  
Hamidi and Moazzeni, 2019; Kang, 
2017, 2015; Kim et al., 2019, 2017;  
Maxwell, 2016; Miranda-Moreno 
et al., 2011; Miranda-Moreno and 
Fernandes, 2011; Pushkarev and 
Zupan, 1971; Raford and Ragland, 
2006; Sung et al., 2013, 2015)  

ns / 
+

(Hankey et al., 2012; Park et al., 
2019; Raford and Ragland, 2006;  
Rodríguez et al., 2009)  

Table 2 (continued ) 

Variable Dir.a Studies 

Transit stop density + (Hankey and Lindsey, 2016; Hankey 
et al., 2017; Liu and Griswold, 2009; 
Lu et al., 2018; Miranda-Moreno 
et al., 2011; Miranda-Moreno and 
Fernandes, 2011; Park et al., 2019;  
Pulugurtha and Repaka, 2013, 2008; 
Schneider et al., 2009, 2021; Sung 
et al., 2013; Tabeshian and Kattan, 
2014)  

ns / 
−

(Kang, 2017, 2015; Le et al., 2020)  

Street network design 
Intersection density + (Hajrasouliha and Yin, 2015;  

Hamidi and Moazzeni, 2019)  
ns / 
−

(Ameli et al., 2015; Ewing et al., 
2016; Ewing and Clemente, 2013;  
Hankey and Lindsey, 2016; Hankey 
et al., 2017; Kang, 2018, 2017, 
2015; Lu et al., 2018; Maxwell, 
2016; Park et al., 2020; Sung et al., 
2013) 

% 4-way intersections + (Miranda-Moreno et al., 2011;  
Miranda-Moreno and Fernandes, 
2011; Park et al., 2019)  

ns / 
−

(Ameli et al., 2015; Ewing et al., 
2016; Ewing and Clemente, 2013;  
Maxwell, 2016; Park et al., 2019;  
Sung et al., 2013) 

Block length + (Ewing et al., 2016; Ewing and 
Clemente, 2013; Maxwell, 2016;  
Miranda-Moreno et al., 2011;  
Miranda-Moreno and Fernandes, 
2011; Park et al., 2019; Tabeshian 
and Kattan, 2014)  

ns / 
−

(Ameli et al., 2015; Hamidi and 
Moazzeni, 2019; Park et al., 2019) 

Space syntax (integration, reach, 
betweenness, etc.) 

+ (Hajrasouliha and Yin, 2015; Hillier 
et al., 1993; Kang, 2018, 2017, 
2015; Ozbil et al., 2011; Penn et al., 
1998; Raford and Ragland, 2006, 
2004)  

ns / 
−

(Kang, 2017, 2015)  

Socioeconomics 
Household size + (Ameli et al., 2015; Ewing et al., 

2016; Ewing and Clemente, 2013;  
Park et al., 2019)  

ns / 
−

(Hamidi and Moazzeni, 2019;  
Maxwell, 2016) 

Mean/median income − (Hankey et al., 2017; Lu et al., 2018; 
Park et al., 2019; Pulugurtha and 
Repaka, 2013)  

ns / 
+

(Hankey et al., 2012; Hankey and 
Lindsey, 2016; Pulugurtha and 
Repaka, 2013, 2008; Rodríguez 
et al., 2009; Schneider et al., 2021;  
Tabeshian and Kattan, 2014)  

Environmental 
Park density or proximity + (Kang, 2017, 2015)  

ns / 
−

(Kang, 2017, 2015; Miranda- 
Moreno and Fernandes, 2011;  
Schneider et al., 2021; Sung et al., 
2013) 

Slope or grade − (Kang, 2018, 2017, 2015; Kim et al., 
2019, 2017; Liu and Griswold, 
2009; Schneider et al., 2012; Sung 
et al., 2013, 2015)  

ns / 
+

(Griswold et al., 2019)  

a Association with pedestrian volume: “+” positive, “–” negative, “ns” not 
statistically significant. 
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3.2. Built environment data 

Neighborhood built environment variables were measured for two 
different buffer widths—½-mile and ¼-mile—in a belief that the number 
of pedestrians may depend on the neighborhood environment at 
different scales. For example, the influence of road traffic volume on 
pedestrian activity may be only significant over a short distance while 
that of street network connectivity may be more extensive. A quarter- 
mile and a half-mile were selected as a standard walking distance 
beyond which walk frequency drops off rapidly; they are used in most 
travel behavior literature (Ewing and Clemente, 2013; Nagel et al., 
2008). Thus, using the “Network Analyst” tool in the ArcGIS Pro soft-
ware, we created street network-based buffers by ½-mile and ¼-mile for 
every signalized intersection. 

For the predictors of pedestrian signal activity, we measured “D” 
variables—density, diversity, design, destination accessibility, and dis-
tance to transit—as well as socioeconomic factors. For density variables, 
we measured population density (number of 1000 people per square 
mile) and employment density (number of 1000 jobs per square mile). 
The population data came from the American Community Survey (ACS) 

Fig. 1. Map of signalized intersections in the six most populous counties in Utah.  

Table 3 
Descriptive statistics for dependent variables.  

Variable Min Med Max Mean SD 

Estimated annual average daily 
pedestrians (AADP) 

1.08 116.13 6737.22 267.28 519.00 

Weekdays (Monday–Friday) 1.12 133.15 7547.23 300.66 598.50 
Weekends 
(Saturday–Sunday) 

0.61 77.52 4712.21 183.82 352.54 

Estimated annual average 
hourly pedestrians (AAHP) 

0.31 33.87 1965.02 77.96 151.38 

00:00–02:59 0.00 2.99 328.01 11.04 27.86 
03:00–05:59 0.02 3.44 376.70 9.86 25.56 
06:00–08:59 0.10 33.92 1889.48 71.33 135.64 
09:00–11:59 0.36 40.89 2926.11 101.74 216.95 
12:00–14:59 0.31 58.17 3757.55 137.90 288.31 
15:00–17:59 0.62 67.85 3409.01 150.67 290.58 
18:00–20:59 0.35 38.25 2566.70 98.00 201.30 
21:00–23:59 0.05 15.81 946.61 43.10 86.37  
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2013–2017 at the Census block group level, and the employment data 
(2017) were collected from the Longitudinal Employer-Household Dy-
namics (LEHD) at the Census block level. Then, the data were assigned 
to the buffers based on the relative areas of the Census boundaries (i.e., 
the spatial apportioning technique). For the land use variables, we 
compiled parcel-level land use maps from the Utah Automated 
Geographic Reference Center (AGRC) for the year 2019 and computed 
the percentage of residential parcels, percentage of commercial parcels, 
number of schools, number of places of worship, and total acreage of 
parks. 

For a transit variable, we measured the number of transit stops in 
each buffer area. Transit stop location data in 2019 was available at 
OpenMobilityData (https://transitfeeds.com/) as a form of General 
Transit Feed Specification (GTFS). Also, two gross measures of street 
network design were computed, using intersection location data pro-
vided by the Metropolitan Research Center at the University of Utah. 
Intersection density (a measure of the block size) was computed as the 
number of intersections within a buffer divided by the gross area of the 
buffer in square miles. The proportion of four-way intersections (a 
measure of street connectivity) was computed as the number of four-way 
intersections divided by the total number of intersections within the 
buffer area. 

Three demographic variables were also included—average house-
hold size, median household income, and average vehicle own-
ership—for block groups intersecting with the buffer. We hypothesized 
that more affluent residents with more vehicles available might walk 
less and drive more, while bigger households might walk more (Ewing 
et al., 2015; Owen et al., 2007). Data for demographic measures were 
gathered from the ACS (2017 5-year estimates) and assigned to the 
buffer using the spatial apportioning technique described above. Lastly, 
as a measure of traffic safety, we included road types for roads near the 
intersection. Road types were divided into three categories based on the 
cartographic code of road centerline data, provided by UDOT: highways 
(interstates, US and state highways, and associated ramps), major roads 
(“major local roads” such as arterials), and local roads (the rest, 
including collectors). (We wanted to include Annual Average Daily 
Traffic (AADT) volumes in the model, but they were not available for 
several signals and most intersections where one would want to apply 
these data. Also, preliminary models found AADT to be not significantly 
associated with pedestrian volumes.) 

Table 4 shows descriptive statistics for the built environment vari-
ables. Within a given buffer width, all correlations between these vari-
ables were low-to-moderate (< 0.55) except for a negative correlation 
between residential and commercial land uses (− 0.75). Also, the highest 
variance inflation factor (VIF) values in the regression models were 
lower than 5. Therefore, we conclude that multicollinearity among in-
dependent variables was not an issue. 

3.3. Direct-demand volume modeling 

Consistent with many other studies using built environment char-
acteristics to predict pedestrian volumes (see Table 1), we employed a 
log-linear regression model in which our dependent variable is trans-
formed using the natural log function. We decided against applying a 
negative binomial (or Poisson-gamma mixture) regression model—-
traditionally used to model count data—because our pedestrian data are 
not actually count data; instead, they are averages of counts. We used 
the log transform because our data are strictly positive and are positively 
skewed. An implication of the log-transformed dependent variable is 
that we can interpret our estimated coefficients (when exponentiated) as 
proportional or percentage changes (rather than absolute changes) in 
pedestrian signal activity due to changes to our independent variables. 

The pedestrian data in this study may have an issue of spatial auto-
correlation, meaning that the estimated pedestrian activity at one signal 
is correlated with activity at nearby signals. Reasons for this might 
include walk trips that extend from one block to the next, similar de-
mographics or urban form characteristics, or a large-scale destination in 
one block (e.g., a regional park, convention center, or theater). Moran’s I 
statistic is a commonly-used measure to check for spatial autocorrela-
tion. Any spatial pattern in the residuals violates the assumption of 
regression models that residuals are independent of each other and 
randomly distributed. Before controlling for the spatial autocorrelation, 
Moran’s I for model residuals in this study (p < .001) indicated a 
strongly positive spatial relationship. 

The spatial lag or error model can be used as a robust tool to deal 
with the spatial autocorrelation issue in ordinary least squares (OLS) 
regression. The Lagrange multiplier test is used to assess whether the 
autocorrelation is in the dependent variable or in the errors and helps in 
the choice of a spatial regression model. The robust Lagrange multiplier 
test indicated a spatial error model as the most suitable method, and 
thus, we employed spatial error models that treat spatial autocorrelation 
between the residuals of adjacent areas. We ran spatial error models 
using errorsarlm function (spdep package) in R 3.6.1 software. The 
Moran’s I values for the final models’ residuals (p > .1), indicated no 
spatial autocorrelation. 

As explained above, neighborhood environment variables were 
measured for two different buffer widths: ½-mile and ¼-mile. In our 
models, trial and error between the two buffer widths for each inde-
pendent variable was used to arrive at the best-fit models. The best-fit 
models were chosen based on the statistical significance of the vari-
able (i.e., p-value) and the goodness-of-fit of the model (i.e., lower AIC 
and BIC values). 

3.4. Model validation 

To test how well our models can predict actual pedestrian volumes, 
we evaluated the predictive performance of our models by running k- 
fold cross-validation (Fielding and Bell, 1997; Hair et al., 2006). Using 
the same data to estimate parameters and to test predictive accuracy 
may overestimate model validity. In k-fold cross-validation, the data are 
divided into k equal partitions. In this study, data were randomly 
divided into ten folds: 90% of the data (training data) used for model 
fitting and 10% of the data withheld for model validation in each iter-
ation. The root mean square error (RMSE), mean absolute error (MAE), 
and mean absolute percentage error (MAPE) are used as three measures 
of the prediction capability of regression models (Chai and Draxler, 
2014; Willmott and Matsuura, 2005). This procedure is repeated for 
each of the k partitions, and the RMSE, MAE, and MAPE values are 
averaged to obtain the mean value. 

4. Results 

Table 5 shows three models for daily pedestrian activity (AADP) for 
all days, weekdays, and weekends, respectively. Lambda represents a 

Table 4 
Descriptive statistics for independent variables.  

Variable ¼-mile  ½-mile  

Mean SD Mean SD 

Population density (1000 per sq. mi.) 4.39 2.80 4.44 2.55 
Employment density (1000 per sq. mi.) 5.60 8.10 4.85 6.31 
Household size (average) 3.09 1.09 3.10 0.98 
Household income ($1000; median) 59.75 23.21 60.27 22.40 
Vehicle ownership (average) 1.68 0.51 1.69 0.47 
% residential land use 31.02 22.72 37.17 21.37 
% commercial land use 29.38 20.11 24.74 16.86 
Intersection density (per sq. mi.) 97.97 49.01 100.32 38.86 
% 4-way intersections 28.46 21.88 25.79 16.61 
# schools 0.30 0.62 0.92 1.18 
# places of worship 0.52 0.80 1.79 1.84 
# transit stops 4.81 3.94 12.71 9.93 
Park acreage 1.46 3.59 5.54 9.10  
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coefficient on the spatially correlated errors (Anselin and Rey, 2010): it 
has a positive effect and is statistically significant in all models. 

Most built environment variables—population density, employment 
density, % residential parcels, % commercial parcels, intersection den-
sity, % 4-way intersections, schools, places of worship, transit stops, and 
park acreage—were statistically significant at a p < .05 level and posi-
tively associated with the estimated average daily volumes of pedes-
trians. Among demographic variables, pedestrian volume increased with 
average household size and decreased with median household income 
and average vehicle ownership of households living near the intersec-
tion. Pedestrian volume increased significantly when the intersection 
contained major roads, compared with only highway or local road types. 

Notable day-of-week differences were also found. As expected, the 
number of schools near the intersection was not significant in the 
weekend model; so were two other demographic variables: household 
size and vehicle ownership. Albeit statistically significant across the 
three daily models, a higher coefficient for the employment density 
variable was found on weekdays while the population density variable 
had a bigger effect size on weekends. Also, the coefficient for places of 
worship was higher in the weekend model. 

Table 5 also shows six models for hourly pedestrian activity (AAHP) 
for specific times of day, in 3-h windows from 6 am to midnight. Lambda 
values had a positive effect and were statistically significant in all 
models. Again, most built environmental variables were positively 
associated with the pedestrian volumes across the day at a p < .05 sig-
nificance level. Average household size (positively) and median house-
hold income (negatively) were also statistically significant in all time-of- 
day models of pedestrian volume. 

The number of schools near an intersection was positively associated 
with pedestrian activity, but only during the daytime (6 am–6 pm). 
Residential land use became statistically non-significant during the 
nighttime (in the after-9 pm or before-6 am models; the latter models are 
not shown in the table). The slope coefficients of population density 
were higher during the nighttime (after-6 pm models) while those of 
employment density were higher during the daytime (models for 9 
am–3 pm). The coefficient for being on a major road (as opposed to a 
highway or local road) was strongest during peak hours (6 am–9 am and 
3 pm–6 pm). 

After fitting the models with the full data, we assessed the predictive 
power of the nine models using 10-fold cross-validation. Intersections (n 
= 1494) were randomly split into ten equal-sized groups. The validation 
data set (10% of the data) was used to validate the model, which was 
fitted using the other 90% of the data through a spatial error model. As a 
result of the 10-fold cross-validation, we obtained average RMSE, MAE, 
and MAPE for each model. From the cross-validation results, the average 
RMSEs ranged from 0.932 (AADP model) to 1.027 (9 pm–12 am model); 
the average MAEs were between 0.699 (9 am–12 pm model) and 0.788 
(9 pm–12 am model); and the average MAPEs ranged from 22.0% 
(Mon–Fri model) to 131.0% (9 pm–12 am model). These error values are 
comparable to those from the full model (RMSEs: 0.928–1.003; MAEs: 
0.690–0.771; MAPEs: 21.8–108.4%), indicating that our predictive 
models are stable for new input data. A further exploration of errors 
show that pedestrian traffic volumes were underestimated in the areas 
with highest pedestrian volume such as downtowns and near university 
campuses, findings which call for additional explanatory variables or 
non-linear functions. 

5. Discussion 

To meet our study objective of examining relationships between the 
built environment and pedestrian activity, we developed direct demand 
built environment models of daily and hourly pedestrian crossing vol-
umes at signalized intersections using a novel data source: volumes 
estimated using pedestrian push-button events from high-resolution 
traffic signal controller logs. Like in past research, we used log-linear 
regression and controlled spatial autocorrelation, and we examined Ta
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traditional built environment measures like activity density, land use, 
transit access, street network design, and neighborhood sociodemo-
graphics. In contrast to previous work, we employed a continuously- 
collected measure of pedestrian activity estimated from signal data, 
measured over the course of one full year, and averaged per day and per 
hour. Notably, we also identified day-of-week and time-of-day varia-
tions in built environment relationships with walking volumes, which 
we believe to be a relatively unique contribution to the literature (see Lu 
et al. (2018) for one other example). Another contribution of our work is 
that we used a larger sample size of sites (1494 signalized intersections 
from different areas in Utah) than almost any other past effort, giving 
our analysis more power and potentially making our results more 
generalizable. 

Indeed, all of our findings are consistent with theory and expecta-
tions (from past research) regarding links between walking and the built 
environment (see Table 2), which supports the validity of our pedestrian 
measures. Intersections with greater population and employment den-
sities and higher percentages of nearby residential and commercial land 
uses saw more pedestrian activity (Ameli et al., 2015; Behnam and Patel, 
1977; Ewing et al., 2016; Ewing and Clemente, 2013; Kim et al., 2019; 
Liu and Griswold, 2009; Miranda-Moreno et al., 2011; Miranda-Moreno 
and Fernandes, 2011; Ozbil et al., 2011; Park et al., 2019; Pulugurtha 
and Repaka, 2013, 2008; Schneider et al., 2012; Sung et al., 2013). 
Transit stop density was strongly and positively linked to walking 
(Miranda-Moreno et al., 2011; Miranda-Moreno and Fernandes, 2011; 
Park et al., 2019; Sung et al., 2013). Regarding sociodemographic 
characteristics, as has been found previously, pedestrian activity was 
greater in neighborhoods with larger household sizes (Ameli et al., 
2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park et al., 2019). 
Overall, these results continue to support research-informed built 
environment interventions and land use policies aimed at creating more 
walkable communities. 

Our analysis was also able to uncover theoretically-consistent re-
lationships between walking and other built environmental attributes 
for which past research has more commonly found null or theoretically- 
inconsistent findings. Signals in areas with greater street network con-
nectivity had more pedestrian crossing events, which has been found in 
only a few prior studies for intersection density (Hajrasouliha and Yin, 
2015; Hamidi and Moazzeni, 2019) and the percentage of four-way in-
tersections (Miranda-Moreno et al., 2011; Miranda-Moreno and Fer-
nandes, 2011; Park et al., 2019). Specific nearby destinations like parks 
also attracted more pedestrian crossings, which has only been found in 
studies by Kang (2017, 2015). Pedestrian volumes were greater in 
neighborhoods with lower median household incomes, which has been 
found in some studies (Hankey et al., 2017; Lu et al., 2018; Park et al., 
2019; Pulugurtha and Repaka, 2013) but not in other studies (Hankey 
et al., 2012; Pulugurtha and Repaka, 2008; Rodríguez et al., 2009). One 
of our findings is perhaps contrary to expectation: the positive associa-
tion of pedestrian activity with major roads. It could be that the design 
and traffic volumes on these streets encourage pedestrians to cross at the 
signal rather than at an unsignalized intersection (Schneider et al., 
2012), or that pedestrian attractors (businesses, transit stops) are 
commonly located along these streets (Griswold et al., 2019). 

The use of a continuously-recorded pedestrian data source also 
allowed us to examine time-of-day and day-of-week variations in these 
built environment relationships that are not feasible to consider when 
using only short-duration pedestrian counts. Many factors had similar 
relationships with pedestrian activity throughout the week and across 
the day, but a few did not. Population density seemed to be most rele-
vant (with a larger coefficient) on weekends and during evening hours, 
when we expect more people to be at home. For example, a 10% increase 
in population density would be expected to yield a 4.0% increase 
(1.100.402) in evening hourly pedestrian volumes (6–9 pm), but only a 
2.5% increase (1.100.258) during the morning (6–9 am). Lu et al. (2018) 
also found population density to have a larger coefficient during evening 
hours than during the day. Conversely, employment density played a 

bigger role on weekdays and during daytime hours: a 10% increase in 
employment density would be expected to generate 1.3% more 
(1.100.136) daily pedestrians during weekdays, but only 0.7% more 
(1.100.070) during on weekends. As expected, our models showed that 
intersections near schools had greater pedestrian activity, but only or 
especially when primary/secondary schools are in session: on weekdays 
and during morning and afternoon commuting hours. This finding 
supports traffic calming and safety efforts around primary/secondary 
schools, including school zone speed limits and crossing guards. 

Despite these contributions, a limitation of this work is the use of 
pedestrian volumes estimated from traffic signal data as opposed to 
observed pedestrian counts or crossing volumes. Previous research on 
pedestrian behavior and the utilization of pedestrian push-buttons at 
signals has found that rates vary across locations such as by signal type 
(Kutela and Teng, 2020), in different situations like the presence/ 
absence of approaching motor vehicles (Foster et al., 2014), and by age, 
gender, and other pedestrian characteristics (Kutela and Teng, 2020). 
These factors and their aggregated versions (i.e., motor vehicle traffic 
volumes and neighborhood socio-demographics) have not been 
considered in the models upon which our estimated pedestrian volume 
data are based (Singleton et al., 2020b; Singleton and Runa, 2021). 
However (as previously mentioned), research from Utah and other states 
(Blanc et al., 2015; Kothuri et al., 2017; Li and Wu, 2021; Singleton 
et al., 2020b; Singleton and Runa, 2021) has found pedestrian push- 
button event data to be highly correlated with observed pedestrian 
crossing volumes. So, any improvement in the accuracy of our models’ 
dependent variables through the addition of factors like these would 
likely be modest. 

Another limitation is that the locations where pedestrian signal data 
are available may not be entirely representative. These data are not 
available at signals without pedestrian detection: in our study, these 
included some high-pedestrian downtown intersections that operate 
without push-buttons, as well as a few intersections in heavily-industrial 
areas and isolated freeway interchanges. Also, signalized intersections 
tend to be more highly concentrated along larger, arterial roadways and 
in urban areas, so our findings may not be completely generalizable to 
non-signalized intersections, and our data may capture more utilitarian 
walk trips. That said, more than 90% of Utah’s population lives in an 
urban area, and we did find more walking near parks. It could be ad-
vantageous to combine signal-based estimates of pedestrian volumes 
with data from permanent pedestrian counters on trails and in other 
more recreational contexts in order to improve the generalizability of 
direct demand models. Overall, these methods may be most appropriate 
for moderately urban to suburban locations. Nevertheless, this trait is 
fortunate, since (in the US) these tend to be the locations most lacking in 
pedestrian data and where tradeoffs have to be made between priorities 
(e.g., in signal timing) for pedestrians vs. motor vehicle drivers. 

Finally, there are opportunities to improve upon our analysis 
through additional research. Future studies could examine seasonal 
variations in daily pedestrian activity at signalized interactions, which 
would consider effects due to weather variables such as temperature, 
precipitation, and wind (Runa and Singleton, 2021). Also, because 
pedestrian traffic volumes may not be linearly related to all built envi-
ronment variables, future studies may use non-linear regression such as 
generalized additive models (Park et al., 2020) or machine learning 
algorithms such as gradient boosting decision trees or random forests 
(Cheng et al., 2019; Ding et al., 2018). We expect that by using long-term 
automated counts derived from traffic signal event data, our pedestrian 
measures can potentially do a better job of reducing the random vari-
ability arising from short-term (usually 〈12h) counts, thus yielding more 
robust relationships with measures of the built environment. However, 
this topic—quantifying error associated with estimates of pedestrian 
volumes using different durations of count data (Johnstone et al., 2018; 
Nordback et al., 2019)—is another subject for further study. Research 
should also continue to explore the feasibility and accuracy of other 
pedestrian detection methods—video image processing (Rahman et al., 
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2019), lidar (Zhao et al., 2019), and others—for pedestrian volume 
monitoring applications. 

Despite these limitations and opportunities for future work, we think 
our theoretically-consistent findings about built environment relation-
ships with walking—and our ability to detect day-of-week and time-of- 
day variations in those relationships—demonstrate the utility of traffic 
signal data sources for direct demand pedestrian volume modeling. 
There are hundreds of thousands of traffic signals across the US (NTOC, 
2012), many with pedestrian push-buttons (more than 85% in Utah). 
Also, many states and regions (including Utah, Georgia, and the 
Phoenix, Las Vegas, and Orlando areas) have or are actively developing 
ATSPM systems to archive pedestrian detections and other signal events. 
These trends make our methods increasingly applicable for the devel-
opment of locally-calibrated direct demand pedestrian volume models. 
Additionally, the ultimate objective of direct demand models is to pre-
dict pedestrian volumes in areas and for locations without current 
pedestrian data. In fact, the specific models presented in this paper can 
be applied, using built environment data, to estimate average daily/ 
hourly pedestrian volumes at thousands of unsignalized intersections 
through Utah (Singleton et al., 2020a). Such estimates would be valu-
able for various transportation planning, design, and operational tasks, 
including as a measure of exposure for pedestrian safety studies. Overall, 
this work provides planners with more tools to model, analyze, and plan 
for pedestrians with greater temporal resolution. 
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